High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch.
نویسندگان
چکیده
Human population studies show that dietary red and processed, but not white, meats are associated with increased risk of colorectal cancer but dietary fibre appears to be protective. We examined whether dietary cooked red or white meat had differential effects on colonic DNA damage in rats and if resistant starch (RS), a dietary fibre component, provided protection. Rats were fed diets containing approximately 15, 25 or 35% of cooked beef or chicken, both with or without 20% high-amylose maize starch (HAMS) as a source of RS, for 4 weeks. DNA single-strand breaks (SSB) and double-strand breaks (DSB) were measured in isolated colonocytes (by comet assay) along with apoptosis levels, colonic mucus thickness and large bowel short-chain fatty acids (SCFA). Both red and white meat increased colonocyte SSB and DSB dose dependently but damage was substantially greater with red meat. Dietary HAMS prevented these increases. Apoptotic cell numbers were increased dose dependently by red meat irrespective of HAMS feeding, whereas white meat only increased apoptotic cell numbers in the presence of HAMS. Red meat induced greater colonic mucus layer thinning than white meat but HAMS was protective in both cases. HAMS induced increases in large bowel SCFA, including butyrate, and significantly lowered concentrations of phenols and cresols. We have demonstrated that dietary red meat causes greater levels of colonic DNA SSB and DSB than white meat, consistent with the epidemiological data. Dietary RS protects against this damage and also against loss of the mucus barrier, probably through increased butyrate production.
منابع مشابه
Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch.
Feeding higher levels of dietary animal protein (as casein or red meat) increases colonic DNA damage and thins the colonic mucus barrier in rats. Feeding resistant starch (RS) reverses these changes and increases large bowel SCFA. The present study examined whether high dietary dairy (casein or whey) or plant (soya) proteins had similar adverse effects and whether dietary RS was protective. Adu...
متن کاملInhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.
Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermen...
متن کاملButyrylated starch affects colorectal cancer markers beneficially and dose-dependently in genotoxin-treated rats
Population studies suggest that greater dietary fiber intake may lower colorectal cancer (CRC) risk, possibly through the colonic bacterial fermentative production of butyrate. Butyrylated starch delivers butyrate to the colon of humans with potential to reduce CRC risk but high doses may exacerbate risk through promoting epithelial proliferation. Here we report the effects of increasing dietar...
متن کاملResistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet123
Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) ...
متن کاملEffect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats
BACKGROUND We investigated in rats the effects of feeding different forms of high amylose maize starches (HAMS) rich in resistant starch (RS) to understand what the implications of RS heterogeneity might be for colonic biology, including innate cellular responses to DNA-damage. METHODS A range of maize starches were compared: digestible cornstarch (Control), HYLON® VII, Hi-maize® 1043, Hi-mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 28 11 شماره
صفحات -
تاریخ انتشار 2007